Mid-term Examination
 Partial Differential Equations (MATH4220)
 (Academic Year 2022/2023, Second Term)

Date: March 16, 2023.
Time allowed: 08:30-10:15.

1. Consider the following three questions.
(a) (5 points) State the definition of a well-posed PDE problem.
(b) (5 points) Is the following problem well-posed? Why?

$$
\begin{cases}\frac{\mathrm{d}^{2} u}{\mathrm{~d} x^{2}}+\frac{\mathrm{d} u}{\mathrm{~d} x}=1, & x \in(0,1), \\ u^{\prime}(0)=1 \quad \text { and } \quad u^{\prime}(1)=0 .\end{cases}
$$

(c) (10 points) State and prove the uniqueness and continuous dependence of solutions to the problem

$$
\left\{\begin{array}{cr}
\partial_{t} u-\partial_{x}^{2} u=0, \quad(t, x) \in(0, T) \times(0,1), \\
\partial_{x} u(t, 0)=0, \partial_{x} u(t, 1)=0, & t \in(0, T), \\
u(t, x)_{\mid t=0}=\phi(x), & x \in[0,1]
\end{array}\right.
$$

2. Let Ω be a bounded, connected, open set of \mathbb{R}^{3}. We say that $v \in C^{2}(\bar{\Omega})$ is subharmonic if

$$
-\Delta v \leq 0, \quad \text { on } \Omega .
$$

(a) (5 points) Prove for subharmonic function v that

$$
v(x) \leq \frac{3}{4 \pi r^{3}} \int_{B_{r}(x)} v(y) \mathrm{d} y .
$$

(b) (5 points) Prove that therefore $\max _{\bar{\Omega}} v(x)=\max _{\partial \Omega} v(x)$.
3. We shall consider functions $h=h(t, x):[0, \infty) \times \mathbb{R} \rightarrow(0, \infty)$ which are 2π-periodic with respect to x, belong to $C^{\infty}([0, \infty) \times \mathbb{R})$ and satisfy the 1 D heat equation

$$
\partial_{t} h-\partial_{x}^{2} h=0, \quad \text { in }(0, \infty) \times \mathbb{R}
$$

In this problem, we are interested in finding quantities that are non-increasing along the flow of the heat equation. More specifically, we will consider the entropy notions.
(a) (10 points) Show that

$$
\begin{aligned}
\left(\partial_{t}-\partial_{x}^{2}\right) \log h & =\frac{\left|\partial_{x} h\right|^{2}}{h^{2}} \\
\left(\partial_{t}-\partial_{x}^{2}\right) h \log h & =-\frac{\left|\partial_{x} h\right|^{2}}{h} \\
\left(\partial_{t}-\partial_{x}^{2}\right) \frac{\left|\partial_{x} h\right|^{2}}{h} & =-2 h\left|\frac{\partial_{x}^{2} h}{h}-\frac{\left|\partial_{x} h\right|^{2}}{h^{2}}\right|^{2} .
\end{aligned}
$$

(b) (10 points) Introduce the function $t \mapsto H(t)$, known as the Boltzmann's entropy, defined by,

$$
H(t)=\int_{0}^{2 \pi} h(t, x) \log (h(t, x)) \mathrm{d} x
$$

Show that the function H decays in a convex manner that is,

$$
\frac{\mathrm{d} H}{\mathrm{~d} t} \leq 0 \quad \text { and } \quad \frac{\mathrm{d}^{2} H}{d t^{2}} \geq 0
$$

(c) From now on, we assume that the initial data $h_{0}(x)=h(0, x)$ is a probability density which means that

$$
\int_{0}^{2 \pi} h_{0}(x) \mathrm{d} x=1
$$

(i) (5 points) Show that $\int_{0}^{2 \pi} h(t, x) \mathrm{d} x=1$ for all time $t \geq 0$.
(ii) (5 points) Introduce the functions $t \mapsto F(t)$ and $t \mapsto J(t)$ defined by,

$$
\begin{aligned}
F(t) & =\int_{0}^{2 \pi} \frac{\left|\partial_{x} h(t, x)\right|^{2}}{h(t, x)} \mathrm{d} x \\
J(t) & =\int_{0}^{2 \pi} h(t, x)\left|\frac{\partial_{x}^{2} h(t, x)}{h(t, x)}-\frac{\left|\partial_{x} h(t, x)\right|^{2}}{h(t, x)^{2}}\right|^{2} \mathrm{~d} x
\end{aligned}
$$

Show that

$$
\frac{\mathrm{d} F}{\mathrm{~d} t}+2 J=0, \quad \text { for all } t \geq 0
$$

(iii) (10 points) Given a real number λ introduce the quantity

$$
A(\lambda)=\int_{0}^{2 \pi} h(t, x)\left|\frac{\partial_{x}^{2} h(t, x)}{h(t, x)}-\frac{\left|\partial_{x} h(t, x)\right|^{2}}{h(t, x)^{2}}+\lambda\right|^{2} \mathrm{~d} x \geq 0 .
$$

Show that

$$
A(\lambda)=J-2 \lambda F+\lambda^{2}
$$

Then by choosing λ appropriately deduce that $J \geq F^{2}$.
(d) (10 points) Consider the function $t \mapsto N(t)$ defined by,

$$
N(t)=\exp (-2 H(t)), \quad \text { for all } t \geq 0
$$

Show that the function $t \mapsto N(t)$ is concave that is,

$$
\frac{\mathrm{d}^{2} N}{\mathrm{~d} t^{2}} \leq 0
$$

(e) (10 points) Let $u:[0, \infty) \rightarrow(0, \infty)$ be a C^{1} function satisfying for some $K>0$ the inequality

$$
\frac{\mathrm{d} u}{\mathrm{~d} t}+K u^{2} \leq 0
$$

Show that

$$
u(t) \leq \frac{u(0)}{1+K u(0) t}, \quad \text { for all } t \geq 0 .
$$

(f) (10 points) Conclude that there exists a constant $C>0$ such that, for all time $t \geq 1$,

$$
\int_{0}^{2 \pi} \frac{\left|\partial_{x} h(t, x)\right|^{2}}{h(t, x)} \mathrm{d} x \leq \frac{C}{t}
$$

*************** END OF THE QUESTIONS ${ }^{* * * * * * * * * * * * * * * ~}$

